Analytical time-domain Green's functions for power-law media.

نویسندگان

  • James F Kelly
  • Robert J McGough
  • Mark M Meerschaert
چکیده

Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation ["Time domain wave-equations for lossy media obeying a frequency power-law," J. Acoust. Soc. Am. 96, 491-500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green's functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1/3, 1/2, 2/3, 3/2, and 2, the Green's function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green's functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green's functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green's function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green's function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave propagation theory in offshore applications

A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...

متن کامل

ar X iv : g r - qc / 9 50 70 35 v 1 1 4 Ju l 1 99 5 Wave Propagation in Gravitational Systems : Late Time Behavior

It is well-known that the dominant late time behavior of waves propagating on a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have also been studied. This paper presents a systematic treatment of the tail phenomenon for a broad class of models via a Green's function formalism and establishes the following. (i) The tail is governed by a cut of the frequency Green's func...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

Analysis of Aperture Coupled Microstrip Patch Antennas with a Superstrate Using the Space Domain Closed-Form Green`s Functions

Analysis of aperture-coupled microstrip antennas with a superstrate using space domain closed form Green's functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain green's functions is performed using the closed-form. The solution of the integral equat...

متن کامل

Dynamic and Static Green's Functions in Transversely Isotropic Elastic Media

Concise and numerically feasible dynamic and static Green's functions are obtained in dyadic form by solving the wave equation and the equilibrium equation with general source distribution in transversely isotropic (TI) media. The wave and equilibrium equations are solved by using an extended version of the Kupradze method originally developed for isotropic media. The dynamic Green's function i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 124 5  شماره 

صفحات  -

تاریخ انتشار 2008